Our paper “TOPOLOGY DESIGN TO REDUCE ENERGY CONSUMPTION OF DISTRIBUTED GRAPH FILTERING IN WSN” has been accepted at IEEE GlobalSIP 2017
The authors: Leila Ben Saad, Cesar Asensio-Marco and Baltasar Beferull-Lozano
The large number of nodes forming current sensor networks has made essential to introduce distributed mechanisms in many traditional applications. In the emerging field of graph signal processing, the distributed mechanism of information potentials constitutes a distributed graph filtering process that can be used to solve many different problems. An important limitation of this algorithm is that it is inherently iterative, which implies that the nodes incur in a repeated communication cost along the exchange periods of the filtering process. Since the sensor nodes are battery powered and radio communications are energy demanding operations, in this work, we propose to redesign the network topology in order to reduce the total energy consumption of the filtering process. An accurate energy model is proposed and extensive numerical results are presented to show the efficiency of our methodology according to this energy model.